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SUMMARY

The: state of ‘aft concerring. ‘models for-recall and: recognition ‘is Teviewed. A
distiniction: is :madé hetweéh nétwork models, ‘search or separate trace -models,
and composite/distrivuted- memory ‘modéls: The. models .are -compared’ on a
number of aspects, such as: whether they are-based on separate or composite
traces, de nature -of the memory representation, context -dependency, etc.
Following this review, a comparison.is made with respect to the ability to predict
basic findings in memory research, The report concludes with a discussion of the
advantages and disadvantages-of quantitative modeéls of memory.
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Modellen voor. hennnenng el herkenning? o

J.GW; Raaljmakers en: R“M Shnffnn

SAMENVATTING

Er wordt een-overzicht. gepresentéerd van- de stand van zaken met betrekkmg tot
modellen voor herinnering en herkérning, Er wordt .eeni onderscheid. gemaakt
tussen netwerlnnodellen, zoekmodellen, en modellen met een gedxstnbueerde

aspecten vergeleken, zoals: de vraag of zé gebaseerd zijn op geschelden dan wel.

samengevoegde. geheugensporen, de aard.van de geheugenrepresentaue, contéxt-
afhankehjkhend e.d. De. modellen worden vervolgens vergeleken in térmen van
de mate waarin zij .in staat zijn, empmsche sésultaten-te verklaren. Het rapport
wordt .afgesloten: met. een- bespreking van de voor- en. nadelen wvan- het werken
met kwantitatief geformuleerde -modellen:voor het geheugen.

R Ry Y Ayt g O R it

PRI

B G e -

IRV

. uml



-

[T A

i
*
¥
5
F

A a s W e St YA i

e IN'I'RODUCI‘IONe O

The study ot learmng and: mémory: is @ research ‘area. that has been dnven by
models; since: at deast-the: 1940%: Over the’years, the emphasxs A mathematlcal

modelhng has: shifted: *froma very: preclse fitting;: of ssmgle expenments to ‘what,
mxght be best«descnbed as: seml-quantxtanve ﬁttmg of aww1de vanety wof phenom-v

one-element model [Bower, 1961] to any of the, current models such as ACl“)
[Anderson, 1983b], ‘SAM: [Raaljmakers & Shlffnn, 1981 Gﬂlund & Shlffrm,_‘

19841:0r TODAM: [Murdock, 1982))i.

The complexmes of .récent’ models contnbutes to the apparent nnpossxblhty*«of'
deciding between then. Although couched " ifi. qulte different ‘terms,. theyoften.

make very similar prédictions, at léast under. appropnate choicés of ‘Parameters.

This.makes:it difficult to:génerate:critical empmcal tests..Ox:the other hand, the

similarity.-of predictions. suggests. real, progress in theorydevélopment, forced by
the: neces51ty to:account.for:a standard and.agreed upon corpus -of findings..

In this-chapter, we w111 review a number ‘of thé most: 1mportant contemporary

modelsrof ‘memory, trying to -highlight -the snmlantles and-differences in the way

they-handle ‘basic facts: about recall and. recogmtlon. Space limitations. :pievent.us

from. any -attempt at .exhaustive coverage. For the same .reason, although: a:

number of models-can:or do predict:response latencies, we leave coverage of: this
important topic to-a.futire chapter.

2  THEORETICAL APPROACHES

Although any-type of classification is bound: to be unsatisfactory, we. will use :a
classification. of current: models. in' thrée basic categoriés: 1) separate trace
models involving :spréading activation, -or ‘making no. explicit .activation .assump-
tions; we term these network models; 2).separate trace ‘modsls-involving parallel
activation, termed search or episodic-trace models;-and‘3) composite/distributed:
memory models.

21 Network models

Network models propose that long-term memory consists of a set of nodes -and.
links connecting the nodes. The nodes répresent concepts or cognitive units
(Anderson, 1983a,b) and the links semantic or episodic relations. Whenever two
items are studied together, a link between the nodes.representing these items
may be formed. In most of these- models, a process of spreading activation
determines the retrieval of information from: memory. Basically, thére are two
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\contmuous actzvatzon model

The all-or-none actlvatlon model ‘assumes. that network nodes <are;: elther actlve
orinactive; The-best:knowr example.ds. the: ACI'E»model proposed iby: Anderson:
(1976) In: such :a. model, tie :spréading ‘of -activatior; s déterniined: by the
(relative)- strength of the:nodes: or: the links: Suppose that two:nodes,. X-and ¥
aré: connected by a- tink -3 If: node Xeis -active, -the probablhty .of activating, ¥in
the. next' unit -of: time. i§ ‘a ‘function..of s/S, the. relitive -strength: of -the: link::l.
compared to- all other links emanatmg from: X, or; alternatwely, ithié: relative
strength of node Y compared t0-all other-nodes linked to. X, In: such:a. model, the
probablhty of :rétrieving Y- given:that:X is. dctive, .is-equal to. \the likelihood that Y
is activated-before a: specxﬁed cutoff:time, .

A continuous. activation. model. was: developed by Anderson‘ (1983a,b) ‘as an
alternative to-the :all-or-nione ‘model. The basic diffefence is-that. network. nodes
now have: a continuously varying:activation:strength:. This:means:that one:needs. a
different rule for determining whether a memory trace has been successfully
retrieved; Ifa: stimulus:node: X has: an -associative link to :another-nodé Y, some:
activation-will:spread :from. X to-Y. ‘The amount of: activation- of. Yis. determined.
by- thie-relative strength.of the link between X and. Y (cornpared-to.all other- links:
from X). In.such:a model it becomés rmore:natural:to assume-that the:probability
and: latency’ of retrieving the trace Y:are a function of the' amount.of activation:
of Y. Thus, the notion of spreading activation ‘has changed from. gradually
activating connected nodes (i.e., distant nodeés take longer to activate) to a
dynamic model in which the activation spreads rapidly over the network but in
varying degrees (i.e., distant nodes. have a lower level of activation),

As an example, in the most recent version of Anderson’s ACT theory, the ACT*
inodel (Anderson, 1983b), it is :assumed that during storage memory traces
(called -cognitive. units) are formed. Traces vary in strength (a function. of the.
number- of presentations and the retention :interval), and these strengths deter-
mine:the amount.of -activation: that converges:on:the trace from associated nodes
(thus,.in this. model, it is.relative node strength, not link strength that.determines.
the flow of activation; it is not evident whether this makes a difference). Thus, in:
a paired-associate recall situation, where the subject learns a list of pairs A-B, it
is assumed that the trace (the cognitive unit) encodes the information that this
pair was presented in this context. At test, the response will be retrieved if (a)
such a trace has indeed been formed, and (b) it can be retrieved within the
cutoff time, :

22  Episodic trace models

The basic characteristic of episodic trace models is that they -assume a set of
separately stored memory traces that are activated in parallel. Such models are

e o - - - - e m el u e e e i s e M e s i A————- s &

S S e s S g P g

[OPRRNN

C e T,

i e L s VAR,

# 5 e

Qi Ty 4

1 P AR AR W R Tl




IRV EVEV L LY

A

o A AP A g

4+ :
P SR,

£ e g oW N A A W I S oy ek

# st i e i a8

:’élong-term memory mvolves sequentlal samples from4 a set Y

Meémory, (SAM) “model proposed ‘by: Raaumakers and Sh:ffnn (1980 1981) In
SAM -the sampling: probablhty of a particular tface depends on the relatlve

.strength «of that trace~compared to‘all other memory traces.

oooooo

‘The SAM model ‘assumes’ ’that durmg storage, mformatlon is: »represented in.
"memory. :images";. which' contair item, - associative: -and: corntextual mformatlon,

The'amount:and: type«of ;mfonnatlon stored:is. determined: by coding; processes;in

STS In. mosi: (mtentlonal) Jéarning: paradlgms the:amount-of information:stored
i a function of the. length of tiime:that the:item:is studied while inSTS. Accord--
ing':to the SAM :model, retrieval from. LTS is. based: on .cués (contéxt, items;
category names) Whether. an image is retrieved. or not, depends on the
associative strengths -of the retrieval cues to that image. These strengths are a

function-of the.overlap .of the cue: inforration and: the: mformatlon stored:in the
image.

An important property of the 'SAM model is. that it incorporates :a rule: to

describe :the overall .strength. of a.setof :probe :cués to .a :particular image: the:

overall .activation strength: (4()) is: .equal to, product of -the individual cué
strengths (weighted if necessary for relative salience :or importance). This

multiplicative feature focuses ‘the séarch process .on those images that are:

strongly associated to:all-cués..

In recall tasks, the search process. of ‘the 'SAM model is based on a series of

elementary retrieval attempts. ‘Each attempt involves :selecting or sampling -one

image ‘based on the relative activation strengths. Sampling an image allows.

recovery of information. from it. For simple. recall tasks, the .probability of
successfully recovering: the name of the encoded word. is' assumed to be a:simple
function of ‘the - weighted:strengths.

Although the 54M model .assumes.that the process of activating information is
basically -the sume- in recall and ‘recognition, thére are some important -differ-
ences between these: two- processes. It is assumed that recognition does not
necessarily involve sequential sampling but is. (mostly) baséd -on' a direct .access
process involving :a- single retrieval step' (Gillund and Shiffrin, 1984, p. 55-56).

The recognition -decision in: this direct access process is based on the sum

(z-A(k)) of the- activation: strengths; if the same cues are used:to probe memory

for recall-.and recognition, the- activations. are the same in ‘both: cases, though:

used in different ways. .As we shall see, the process of summing activations

makes:the SAM: model- for recognition- remarkably similar in structure to models.

that appear quite different on ‘the surface, even ‘models that sum inputs at
storage rather-than retrieval-(like most compesite, distributed models).

111 ) «memory*
‘traces The best: kiiowi ‘examiple:: of such: a: model is: the: Search iof; Assocxatlve

G MRBRRIIII R

PRI g e R et

e




B - ———— e ——

S T A

£ o .

N i oS e s g O S TR s By ey

10:

Because an?old" Tesponse-is:made:when z; A(k):is, .greater than-a: Criterion-value;;

the. dlstnbutlon ‘of “the:"sum. determiinés- performance For+this Téason; ‘SAM

ificorporates- speclﬁc variafice: assumptions; -in:particular; ‘the standard deviation
-of thedistribution of a- -given: strength isassumed:to:be: proportronal ‘10 the -mean,

stre'ﬁgth value (Glllund & Shrﬂ'rm, 1984 Shrffrm, Ratchff, &: Clark, 1990)

The SAM model -assumes: that for typlcal epxsodlc-memory tasks; contextual

mformatlon is -always encoded.in ‘the. memory image,. and contéxt is one of the:
retriéval‘ cues.. Mensmk and Raaljmakers (1988 1989);proposed :an:extension:-of
the SAM model to ‘handle trme-dependent .changes. in- context. The ‘basic: idea,
adapted: from Stimulus. Samphng Theory ‘(Estes, 1955), iS-that a. random fluctus
ation of elements:occurs ‘betweer two sets, a set-of :available context elements.
and a sét of- (temporanly) unavailable. context elemeénts; Performance is: a.
fnction- of the relationship between sets .of. avallable elements ‘at: differerit ‘points
in:time- (v1z study and'test: tnals) :

Hintzman (1986, 1988) developed: a emodel for -épisodic: memory that bears.
similarities fo Gillund and' Shiffrins SAM model for recognition, This model,

MINERVA 2 has been: apphed pnmanly to. category learmng and recogmtlon
Both- rtems and ‘memory traces: are represented, as hsts of features or vectors In~
simulations of the inodel, it has:been assumed.that:each-feature is:independently
encoded with: probability- L, -a. learning rate parameter. When a probe ‘cue is:
presented, all memory traces are activated in- parallel. The amount of activation
of any particular trace is a nonlinear function of the similarity:to the probe cue.

As in the SAM mniodel, recognition performiance depénds on a single value, the
summed: activation ‘of all traces, In order to allow- recall to be. carried out; the
model also stipulates that.a vector is retrieved. Thls vector (called the-echo) is
the sum.of .all trace vectors, each weighted by its activation value. Because of the
weighting, and: the nonlinear activation. rule, the echo will contain ‘a dispropor-
tionate representation of those traces similar to the memory’probe. Thus; if part
of trace j is used a a probe, the echo will contain a.strong representation from
the entire trace j. For example, if a trace encodes a studied pair 4-B, and 4 is
used-as a prabe, the-echo will-contain something-similar-to 4-B, allowing B to be
recalled. Of course, the. retrieved trace is actually a composité of many traces
(unlike the.SAM:model), so some:mechanism is needed:to extract some particu-
lar item from the composite - Hintzman (1986, 1988) .discusses .sevéral: possibil-
ities, such as comparing the echo-to'the ‘stored traces, or repeating ‘the: retrieval
process.several times, each time usmg the retrieved:-echo as a probe; until the

echo achieves a stable. value -(usually: matching some. stored.trace). In any-event;

one basic difference betweén SAM and. ‘MINERVA 2 is that the latter model
assumes that. in .recall a kind: of composite memory trace. is retrieved(at least
1mtxa11y) whereas the SAM model for recall holds. that. a specific: memory trace
is sampled (initially, though differént traces may be sampled subsequently).
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2.3* ' Distribnted memory»models

chapter i Annual Revzew by Hmtzman, 1990) These models fall ms;two related*
but: sornewhat: different. classes; Tn: 0ne-class; items.are: represented by Vectors:(as:
in MINERVA 2)-or-matrices: of elementary features-and: the- “memory: consists-of
a- sum :of the. vectors -or matrices: (&:g. TODAM [Murdock, 1982, ‘CHARM
[Metcalfe Erch, 1982 1985], James( Anderson’s: - vector. modei [Anderson, 1973],
theé Matrix: model [Pike; 1984; Humphreys, Batn, & Pike; 41989],sKanerva’s SDM
model [Kanerva, 1988] falls: partway “bétween this.-class-and:thé: :Separate storage:
class. of .the: ‘previous.: sectlon) 1In the second' class;; /memory: consists: of :nodes
coniiected by ‘Weighted. ‘links; items -are represented by a ‘pattern .o set- of
activations -of :thé nodes, -and long:term: i memory-consists of ‘the. valués' of ithe
weights.on the.links’ (&g ‘Grossberg’s: ART -model: [Grossberg, 1987; Grossbérg.
& Stone, 1986}; James :Anderson’s BSB ‘miodeél’ [J.A. Atiderson -et- al;; 1977],. or
any -of -the. .feedforward: backpropagatlon .models; McClelland :and: Runelhart’s:
recurrent:model);.

The-basic: drfference~between suchwmodelsrand ‘the:models' drscussed prevrously is’
that composnte/dlstnbuted* mémory models: assume-that.a memory trace is-not:a.
distinct, localized--entity ‘but rather: part .of 'a. combination. or ‘Superimposition. of
all traces input tothé systém; ‘It is. this aspéct ‘that ‘has::made many: of ‘these
models ‘seem ‘both mysterious to ‘the-novice::(who wondérs:how memory can ‘be
as:good:as:it is), and:attractive:to many: éxperts:(who can explam why memory:is
as bad as it is, and how we can.extract:averages and-prototypes. from. inputs, and
who like the analogy to neuronal structures),

These .composite/distributed storage assumptidns -can -serve :as -a basis for a
memory model because: for .each version: there: exists an: appropnate retrieval
operationi. In some cases the'.cu¢ will rétrieve. a noisy version of :the ongmal
trace containing. that cue; in other cases the -cue. will retrieve .a noisy version of
an item originally stored as an associate -of the ‘cue; in yet other .cases the
retrieval may be a clearly definable response,.but with a type of noise determin-
ing the probability ‘of reaching such-a state, and: determining. whethér the :state.
would' be the correct-one. The retrieved information can be- matched: against the
input to perform recognition,,or if necessary can-be ’cleaned up’ in:some-fashion
to-allow a‘response:to.be-emitted, :

As an example, consider one version:of the. Matrix:model: proposed by. Anderson
et:al. (1977; termed BSB for 'brain state in:a box’). Whenever two items. (f, :g)
are ‘associated, a matrix A, is produced with cell elements A,(r,s) f(r)g(s). The
composite memory (M) consists of the sum of -all such association matrices,

M = Z A, Ignoring for simplicity the details of the node-activation process (such.
as its ‘nonlinéar limitations on activation growth), the retrieval of an associate
(g) given a.cue item (f;) can be obtained, by postmultlplymg M with.f; the tesult,
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*Mf, i a norsy composrte of those vectors that had«been«studredwwrthrboth f, and»

/formulated specrﬁcally for parred-assoclate recall, a srmple tmodrficatron wrll

handle fecogiiition: memory ‘The :basi¢c: idea. is; that ‘recogmtrom mvolves a

matchmg .operation; of the: <composité ;memory; trace swith: ¢he: to-be-recogmzedf

item. In.:~ Jér for thrs 10 work, :it. ‘must: be- ,assumed ’that the: zmemory, trace:

:mcludes%.not only assocratrve mformatron:but also 1tem mformatron.

Although -we thave: 1gnored the short-term actrvatron features of the BSB *model*.
it:is: a*member ofoursecond-class: We: begm our: drscussron of ‘the: first class-with.
a;model- closely felated 1o Anderson’s ‘but- wrthout a nodeeactwatlontprocess (and:
its; nonlinear limit -on.:activation- values), Thrs is 'the: Matrix- model ; :proposed: by

Pike .(1984; se¢ also. Humphteys, -Bain,.and-Pike, 1989; and’ Humphreys Pike,.

Bain, & Tehan,. 1989) Associations: of item vectors: are. represented by-m. -ices
to:form-a-compdsite: memory, matrix. In'recent versions.of this-model, context-to-
-item associations. shave. been mcorporated in the ‘matrix model in: order to
account for the fact. that memory of :a to~be-memonzed list.is to. some' extent

"isolated" from all other memories. Thus, instead of storing.a: two-wayassociation:

between the members of a paired associate, a three-way dssociation between the
two itenis. and: the. context; isstoréd-(in.thie form of a 3-d1mensronal ‘matrix).. In
order to retrieve: g, the meniory matrix,(M)-is multiplied.in.a: specific iy (see
Humphreys et al., 1989) with. the matrix:obtained:by multiplication of the context
(x)-and:item (f;) vectors. The latter product defines the "interactive" retrieval: cue
representing the association of context:and stimulus itém.. This:incorporation of
contextual: associations -makes. it possible to distinguish: between episodic
(list-specific);and semantic:(preexisting) associations.

Related models have been proposed by Murdock (1982) and Metcalfe Eich
(1982; 1985; see also-Metcalfe & Murdock, 1981). In-both Murdock’s: Theory -of
Distributed .Associative Memory. (TODAM). and ‘Metcalfe’s Composite: Holo-

graphic Associative: Recall ‘Model: (CHARM)!, the associative encoding .and

retrieval .operations are-the mathematical:-operations of convolution. and correla-
tion, respectively: (see Metcalfe Eich, 1982, 198S5).

The TODAM ‘model assumes that when each. association 4-B s studied, the
vectors representing 4: and: B, .and thé -convolution vector representing A-B, are
all added to a slightly decayed ‘version of -the single: composite memory: vector
that contains. all of episodic memory. In this model; -recognition.involves ‘match-
ing the to-be-recogruzed item vector to the memory vector (i.e., taking the dot
product). and ‘using the resulting scalar number as a measure of ‘familiarity.
Recall:starts by-correlating:the .cue item vector with the memory trace, producing
a noisy vector containing: components representing versions-of: all .items. associ-

1 The term 'holographrc refers to the analogy between the propemes .of human associative
memory and those of . holograms (Pnbram, Nuwer, & Baron, 1974; Willshaw, 1981), in partrcular
their resistance to local damage and tbe associativé propertiés,
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'ated to,the cueivector: durmg study The noxsy vector : must then:be cleasied:t up- 10

produce a-Tesponse (say, by companng the:fetriéved: véstor to-a list of- separately
stored vectors representrng 1tems in: semantrc memory)

Rather than store vectors, CHARM (Metcalfe Elch, 1985) ‘stores ‘anitocofvolils -

tion. vectors: for each smgle 1t‘em' these. are stored: along w1th the -¢onivolution
vector for the assocratlon. For all studred“parrs, these*vectors are summed mto a
TODAM In: CHARM 4 probé-with 4 retneves a composrte norsy vers10n~of all
items- convoluted with A mcludmgA ‘itself, $0-that ‘itein-and  associative-informa-
tica are not mdependently retneved (as they are ‘i TODAM) As usiial, the

tri.ce must be- cleaned up t6: generate a response ifi.a-récall task. Recogmtlon-

cait’be- accomphshed by comparmg the retrreved vector 'to the test vector.

The second- class of composrte/dlstnbuted model explrcrtly in¢orporateés . pro-
cesses of node activation ‘(often thought of as short-térm mémiory) as well as
weight ‘modification -(thé- sét of weight representmg long:term memory); both
processes typlcally being noniinear. The complexttres introduced ‘have led most
investigators to explore thesé models-in-the-form. of . computer. simulations. (with
the notable exception of James Anderson: dnd Steve Grossberg -- see below).
Such models aré often described :by thé térms *connectionist’ -or' 'néural net’.
Most of the applications have béen to learning phenomena, catégorization and
classification, or perceptual phenomena, but some discussion of applications to
memory is useful,

Consider first a representative back-propagation model (Ackley, Hinton, &
Sejnowski, 1985; Rumelhart, Hinton, & erhams, 1986). This odel assumes ‘a
3-layér represéntation: a layer of input units or netivork nodes, a layer of output
units, and' a middle layer of $o-called-hidden units. Activation is fed' from the
input units to the ‘hidden units (using a nonliriear transform), and from thesé to
the output ‘units. All connections bétween layérs Dave weights that determine
how much the activation of a partrcular, say, hidden unit depends on the
activation of a particular input unit. The basic rule of the back-propagation
model is that these weights are adjusted during training in order to optimize the
correspondencc between predlcted and ‘actual output vectors (the back-propaga-
tion algorithm performs a kind of least-squares fitting procedure). Oné can use
such a model to perform récognition 2.ad recall in a number of ways; -pérhaps the
simplest i io have each input assrciation attempt to reproduce itself at the
output layer. ‘Then a subsequént teit with an item will ténd to produce a noisy
version of the association ‘containing that item at-the output layer. Recogmtron
can be accomplished by matchirg, and recall by cleaning up the trace in some
fashion, -

It has been shown that thes: networks can represent virtually any computable
mapping from input to output layer (given enough hidden units). However, for
our purposes the importart issue is the way in which such a mapping is learned
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and. refained: Ainder; various conditions, These; aspects have been cousidered: by

McCloskey and Cohen (1989) and Ratchff (1990)

McCloskey and:Cohen - (1989) showed that in: two-hst recall tasks the backpropa-
gation: ;imodel suffers from - catastrophrc fcrgettmg the sécond. Tist . léads: to-

-almost. complete forgettmg of the. first list, Sumlar problems were uncovered.: by:
Ratclrff (1990) ‘who analyzed the, model’sf predrctlons for recogmtron _memory,

This result i is: undérstandablé. if it.is- reahzed that.these. neural:net models: -adjust
the - connectron werghts -to, £t the-iost; teceit: strmuh, -and that it 1s\assumed that
the mputs during: the: second 1ist, are - of second:list: iteriis only. At the:sait. of
second:-list learmng, the werghts will-‘be configured optrmally for the first list.
However, theére is no mechanism: it the model that will keep the wexghts from.
obtaining- completely dlfferent values, optrmrzmg the recall" of the second-hst
items. Hence, after a few: trarmng trials.on the second:list,. the network will have
"forgotten” the first list.items. Ratcliff (1990) ‘also:showed that this model. farls to
predict a positive effect.of amourit of learmng on the &’ :measure: for- recognition.
(Ratcllff also.showed: that several. related .models, mcludmg the .auto-associative
model: proposed by McClelland and Rumélhart, 1985 -- 'see.below --, farled to
resolve .the. problems Reseaich,.going :on-at-the: time of" thls writing suggests. 4
number of new approaches that. mlght work; e.g. :Sloman and Rumelhart, in
press; Kruschke, in press;, Lewandowskl in_ press. Below we shall dlSCllSS the
ART model - of Grossberg that deals with ‘the. problem in- a rather explicit
fashion). ,

The backpropagation models are ’feedforward’ networks: activation flows only
forward through. the system (the amount of error is in a sense propagated
backwards through the ‘system in order to adjust the welghts approprrately, but
this, should not be confused with the ﬂow of activation), On the other hand; a
number of models are recurrent;. activation. that leaves a node. can be. fed back to
that same node, possibly after flowing through a-number- of ‘intermediate nodes;
and the process typically continues until a stable. patterr: of activation results.
(The BSB model has this. character, though we did not discuss the dynamics of
activation.).

Consider first the McClelland and. Rumelhart (1985) model. In brief, a set of
ncdes accepts input from external sources, and. is fully interconnected  (except
that nodes do not directly activate themselves) by directional links having
weights. Activation moves through the system drivén by the sum of the external
and internal inputs to-a node, until a stable pattern.is reached.. “Then. weights are
adjusted so as to reduce the difference between the internal and external input
to each cell (so- that the network will try to reproduce its -external inputs).
Recognition can be accomplished by matching an input to the stable pattem of
activation it produces, and recall by cleaning up the same stable pattern in some
fashion.
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Fmally ‘consider. the -tecurréiit /ART -models -of - -Grossberg: -(e.g:.- Grossberg; -and:

Stoné;. 1986;- although ‘the. ongmal .miodels. - -date ‘back: before 1970)., We: will

-describe :a greatly: sunphﬁed ;vérsion of the ‘theoty. to., glve the flavor: of sthe

approach. Memory consists-of a.sefies of ordered layers .of ‘nodes. :Consider jost
two layers, with perceptual inputs to layer 1,-(and, in.general, top-down mputs to

layer 2). In addition, weighted links exist in:both-directions between niodes-in- the

two layers, and activations pass ir both directions -along these links. Within a
layer, there may: also :be connections; but. these -afe -inhibitory and:do not. carry
activations - d;rectly The -two layers -pass..activation: rapidly back. and-fortk: -until a
stable result is achieved: Because: of inhibition within-layer 2, a single: node ‘will

come to-be active in this layer, in stable resonance-with a pattern-of ‘activation:

on the nodes in layer 1. The:stable:pattern may-be used:for fe‘coggﬁtiqn or-recall
in.ways similar to-those we. have-discussed-already.

A particularly: noteworthy feature of ‘the model is its: method for picking the

single active node.in layer 2. The pattern of activations:sent down from this node-

to layer 1.is compared with:the pattern.in layer 1. If these:-do not match well, the
currently active layer 2 node. is turned off, the system resets, and a new node in
layer two wins the competition. This continues until-a-good match is found, until
a node not yet used as a template for a pattern is found, or until no nodes are
left, in which case all layer 2 nodes become inactive. The result is that different
patterns are assigned-new nodes, and new learning does not harm old learning in
the destructive fashion of other models. of this.class.

The .seights on the links. change continuously also, but at a much slower rate
than the activation changes. The upward weight changes are made so as to

reduce the difference between a weight itself and the signal passed upward along:

that link. Thus a set of weights leading to.a single.active node comes to correlate
with the activation pattern in the nodes. Also the downward links from the active
node are adjusted to match the activation pattern. in the layer 1 nodes, so that
top-down templates of the presented patterns are learned. The weights leading
to and from any one layer 2 node come to encode a set of highly similar
patterns, so that each node in layer 2.can be thought of as a category prototype.
A particularly noteworthy feature of this system is the fact that the system can
have a distributed representation at some levels (e.g. level 1) and- a potentially
separate representation at other levels (e g. layer 2).

24 Differences.and similarities

In this section we will compare the various models on a number of important
theoretical dimensions. Although the various approaches that we have con-
sidered are superficially quxte different, basic phenomena are often explained in
a similar manner, albeit using different terminologies.. This section will focus on
the basic issues concerning the conceptualization of memory processes. This
section will focus on basic issues concerning the conceptualization of memory
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processes. 'The -discussion will-deal:with.issues: as-if they:were ifidépendent, bit:it
1sv1mportant to: remember that 10-ope: of the hypotheses;dlscussed below can be

in’ Wthhwlt is: embedded
241. Sepamte Vs composzte memory»tmces

The -quéstion- here 1s~whether the 'model:assumes-that: dlfferent items are. stored
in separate traces or in one-composite:memory-trace. Whether this:is:a- meamng-
ful theoretical' distinction depends on:a number of auxiliary-assumptions in: the
models in-question. For example, ‘Shiffrin :and Murnane- (in-press,.a).showed that
an arbitrary number-of events can be:stored in-a-single number-on.a: smgle

in a way that allows each event to:bé tetrieved-without .error, The method is. niot
a physically realizable one, however. Plausible composite systems, incorporating
the equivalent of neural noise, all seem to have at least one testable property:
When the system 'is-densely :composite, then the ‘storage :of new inputs, or .even
the repetitions of old inputs, tends to-degrade the. representations of other old
inputs. Ratcliff, Clark, and. Shiffrin (1990) tested this notion empirically .and
found that repetitions of some list items did not reduce recognition performance
for other list items (see also, Murnane and Shiffrin, 1991).

Shiffrin, Ratcliff, and Clark (1990) looked at the implications for extant models:
All then current models were found wanting, They concluded that composite
models dense enough to predict forgetting caused by the composition property
could not predict the findings. They concluded that models positing separate
traces had the potential to. predict the results, and developed a variant of the
SAM model that did so. This variant assumed that repetitions were accumulated
in a single trace (a kind. of local composition hypothesis--see -below). It also

incorporated ‘a ‘differentiation’ hypothesis: Suppose two different items A and B

were not rehearsed together; if B stored in memory more strongly, then will A4
used as a cue will tend to activate-it less. -

A more local composition issue concerns whether two separate presentations of
a given item are encoded separately or in the same trace. That is, if an item is
repeated, does the second presentation lead to a strengthening of the originally
formed trace, or will a new trace be formed?

MINERVA 2 assumes that each separate encoding of a single item (repetition)
leads to a separate episodic memory trace, ACT* assumes that repetitions
strengthen a given trace, and the early versions of SAM were somewhat ambigu-
ous about this point. Recently (see Raaijmakers, 1991), the SAM model has
been extended to deal specifically with the effects of repetition and the spacing
of repetitions. In this version, a kind of study-phase retrieval assumption ‘has
been added to the model. That is, on the second: presentation an (implicit)
retrieval attempt occurs. If the trace representing the first presentation is
retrieved, it is assumed that the new information will be added to the "old"
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memory ‘trace;; othcrwxse, a.few:ttace:will:be formed; In  addition;- Shiffrin; ét: al;.

(1990): had:to.assume:a strengthened tracert0-explain:the-lack:of a hst-strength(
finding i recogmtlon. “This view: gamed support from: a:stiidy by Mirnatie: and.
Shiffrin- (1991) ‘They: ‘tried:to; -indiice separate 'storage - .0f 2. repeatéd word+by
embeddmg it in--different séntefice: :contexts;: this: mampulauom produced the:
expectedpositive" hst-strength efféct in: récognition. Evidence:of a different sort:
supporting this view arises. from a_study by Ross. & Landauer (1978) They-

showed. that ‘the traditional spacing effect only :occurs for the probability of

reca.llmg single items, presénted ‘twice: :and: ot for the probabilityof recalling

cithiér- one ‘of two- different .items..each ;presented conce. This: result. seems 10
require-that repetitions. of an:iteim:should ‘be treatedwdlfferently “from ‘the: case-of
multiple .items; each préseiited" once (although firm- concluswns depend: on- the
details of each:model).

2.4.2 Representational issues

We will .consider three representational aspects: (1) the nature.of ‘the informa-
tion 2ncoded in the memory trace, (2) whether links between- memory traces: are
assumed, and: (3) the representation of "associative stréngth".

The models that we have considered -differ in .their assumptions about the
information that is encoded in the memory trace. In the all-or-none activation
model’ ACTE -of Anderson (1976), storage of a simple pairwise association
involves the formation of a new link betwéen pre-existing network nodes. In the
ACT* model, what is stored is a cognitive unit representing the episodic experi-
ence. It is assumed that such a new mnetwork node has associative links with
nodes representing the constituent parts of the item, i.e., (in this case) stimulus,
response, and list context. In ACT*, associative strength is represented simply by
the strength of the memory traces. As described above, these strengths deter-
mine the amount of activation that spreads-to the trace from associated nodes.

SAM and MINERVA 2 also assume that the trace represents the "episodic
experience”, but are less specific about the exact nature of what is stored. The
originall SAM model focused on the relation between cues and images:
associative relations .are represented. by a "retrieval structure" rather than' the
more traditional "storage structure”. The model does not make use ‘of explicit
associative connections between images, though these are present implicitly in
the following sense: suppose two-items are studied-together; when oneis used as
a -cue the retrieval strength to the image of the other is high. SAM was not
entirely explicit concerning the nature of the "image" though for most verbal
studies an image was based on the individual word. Shiffrin, Murnane, Gronlund,
and Roth (1989) presented evidence that a good deal more flexibility is needed,
and that a sentence is often a single image (and that, under some circumstances,
a pair of words:is-a. single:image), Thus.in principle, a pair-association could be
stored in two ways: separate images governed by an implicit association -that is
represented in'the retrieval structure, or-a single combined.image.
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MINERVA. 2: -assumes; that: -episodic--eéxperiences; -and: ‘memory: ‘traces -can.-be:
represented 4§ vectors: of‘feature values. .Sincé, the nature-of these features. is-left
unspécified;. ‘this::assumption: -does not; really ;pose; :any: festrictions. It +i§ -riote-
worthy that MINERVA represents parrs by encodmg the component vectors
durmg retneval that lets the system dxstmgmsh whether tWo: stored 1tems are m
the .sameor: dxfferent traces. ‘ : , o

Finally, what aboiit the; models-with composlte/dlstnbuted representatrons? The
final representation: is-generally-a vector or-matrix, and:is a composite ‘of similar
vectors-or matrices: (or degraded forms of these) stored-for individual items. and:
pairs, The:question is the:way-in which associations.and single items.are ‘handled:
during storage. TODAM has item vectors, and convolutions .of item vectors: for
associations, Context information could in principle be-part of each vector, but in
recent work has been treated as a separate vector. CHARM treats single. items
as autoconvolutions, but is otherwise similar to TODAM in most respects. The
Matrix model treats individual item vectors-separately, -and: context as .a séparate
vector. Single items are siored:as an association matrix ‘made from the item,
context and a unit vector. Pairs.are matrices made from-the product of the two
item vectors and the context vector. One issue left unresolved for these models is
the basis by which some types of information are encoded in a given vector;
while other types are singled out for treatment as. a separate vector. For
example, how would category information be treated? (see Humphreys, Wiles &
Bain, 1991, for one possible solution).

A more general solution to this. problem is possible if the various types of
information, and. various items to be associated, are all treated as components of
a single vector, or single pattern of activation across a set of nodes. For example,
in the McClelland and' Rumelhart autoassociative recurrént model, and
Grossberg’s ART models, all items to be associatéd, and related information, are
encoded as a single vector or pattern of activation values sent to a set of nodes.
Anderson’s BSB model, and various versions of feedforward backpropagation
models use either of two methods. In one method, similar to those in the
recurrent models just. mentioned, items to be associated: are -encoded together in
a single input vector (for example, the model of Ackley et al, 1985, tries to

reproduce at the output layer the vector presented: to the .input layer). All such-

models use a pattern completion property to retrieve associates. In the second
method, the items to be associated are treated as separate vectors; for example,
the input layer could encode one item and the output layer could encode the
associated item-(J.A. Andérson et al., 1977).

2.4.3 Contextual encoding
Any model that is designed to explain-data from episodic: memory experiments

must. somehow account. for the fact that a paired associate item such as apple-
engine can be learned despite the presence of strong competitive semantic associ-
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ations: (apple-pear) ‘It: seems highly: unhkely that -one :of :two-presentations of a

list:would:créate:such. a:strong association ‘that:it.dominatesthe pre-expenmentalw

associations; This;: subjects-are: able:to- learn-différent :associative: ‘relationships -in

different -situations. This: contextuaL dependence isa fundamental fproperty of

episodic: memory

It therefore :seems hlghly desuable for: a. model of memory to ‘bave:some: méans
of selectively accessing ‘memory. traces stored: under partxcular ‘temporal’ .or
contextual. .conditions; :Note: ‘that -a~ simple recéricy-based: mechianism will -not
sufﬁce-subjects can access.:information-from: .contextually: 1dent1fiable ‘periods..in
the past, Togivejlst:oné-example,. subjects:afé-able to:access: selectlvely not. the
list learned’ most. recéntly but.:the. list ‘learned_prior to: that -(Shiffrin, 1970;
Anderson & Bower, 1972).

Most models incorporate .contextual: associations.as- the mearns to focus retrieval
processes in episodic :memory, either. by including ‘the contextual. information in
the memory trace, or by treating the contextual information. as a separate item.
Whether this alone will suffice is' an open question. For example, ACT* and
MINERVA 2 assume. an additive .rule for .combining ‘the associative-strength.due
to context and item. Such a rule may not have a sufficiently strong focusing
effect to eliminate strong interference by preexperimental associations. The
multiplicative combination ‘rules used, for :example, in SAM and the Matrix
model are such-that retrieval is focussed.on those traces (or those components of
the composite trace) that are consistent with- the context at test. Even a
multiplicative rule may not, by itself, be sufficient to focus retrieval properly. For
example, Humphreys et al. (1989) call attention to crossed-associates lists, in
which the subject is asked to learn pairs like doctor-king and queen-nurse.
Versions of the SAM model ‘in which individual words (but not pairs) have a
single (semantic) memory representation would not easily predict the learning
seen in such cases. However, SAM models typically assume that images are
episodic in nature, not semantic.

It should be no surprise that models that do not incorporate context will not fare
well. For example, a model that does not include a way to reduce the effect of
irrelevant associations will have serious problems. explaining why the interfering
effect of the number of items on a' single experimental list is not completely
swamped by the millions of .previously acquired -associations. A simple forgetting
assumption, ie., a reduction' of strength. for previous associations (as in
TODAM), will not do the. job without added assumptions about .context: The
strong empirical list-length: effects would require too rapid and massive forget-

ting.
2.4.4 Storage

The issue we focus on here is the predicted effect of increasing study time for a
list. TODAM, CHARM and the Matrix model provide examples of models in
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‘which- srmply“addmg -additional copies. of: each:trace: to,memory~may Not: 1mprove

memory both the mean and standard dev1at10n of the retneved srgnal nse'

1988 Shlfﬁ'Wﬂ al 1990) At least two approaches have been used to solve thls

rproblem Hintzman- (1986, 1988y and Murdock and Lamon (1988 séé :also

Miirdock, 1989). have proposed a probablhstlc encodmg assumptlon Each
featiite. -of -an. item 1s .encoded: (stored) with a: probabrhty p-:that riSes: -with

Ppreséntation’ time: If -not.stored it i§' given: 4 méutral: value .(or ‘in: a; variant

discussed by Shiffrin et al.,. 1990 replaced 0y ;a.random value) Metcalfe Eich
(1985, p: 28) proposes. ‘a.variant-in-which:all features: of an.item: are ‘either
encoded ‘or"not (all-or-noné encodmg) :In all these vanants, both repetrtrons of
an-item. and:increased study  time_will-improve: storage: relatlye towvariance in the
system, and therefore increase performance.

Shiffrin et al: (1990) -discuss an alternative' way in. which:these models might
show .a: leammg or repetmon effect. This alternative is: bassd on. the fact ‘that
performance in these models is related to the: signal-to-noise ratio (or d’). Since
d’ measures the ratio .of mean signal-strength to. the standard -deviation, d’ can
show an increase with repetition if a constant. is-added:to:the siandard deviation.
The reason for this is. that the standard deviation will no longer be completely
proportional to the ‘mean signal stréngth: It is natural to suppose that the
constant represents activation of traces or trace components from lists other than
the one being tested, or from extra-experimental memory. (More generally, this
assumption may prove useful in all models because it lessens the effect of list
variables like list-length and study. time in accord with the amount of extra-list
activation).

The remaining models predict performance increases with repetitions or study
time for fairly obvious reasons: storage of stronger associations in SAM or
ACT®, or weight changes that produce better encoding in the neural net models.

2.4.5 Retrieval

One of the major differences between the models discussed here concerns the
manner in which the retrieval process produces-a recalled item. In-SAM separate
traces are accessed séparately, w0 the recovered information .can be compared 10
a standard Iexicon; SAM doesn't provide any details. of this process, but simply
assumes the probability:of successful recall rises with the strength of the cues.to
image relationship. The. ACT models use similar probabilistic ‘rules. MINERVA
2 also has separate storage but retrieves a composite. This. composite -could be
compared with the individual stered traces, but this seeins unsatisfactory because
recognition is also assumed to be a composite process. Hintzman (e.g. 1988)
proposes a somewhat more satisfactory solution in which the composite. retrieved
vector is used as a subsequent retrieval cue, the process continuing in this way
until the- retrieved: vector comes to represent an unarbiguous item. ART also
has separate storage, and test. probes come to activate some single node in at
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feast: oné: layer, ‘this¢ node sends down a pattemc of 2
produce a: clear: recall, or- (1f»’1t 1578 categor’y node*rather than awsmgle 1tem»node)
could be compared to separately*encoded patterns elsewhere in- the system ]

The models fhat-assuine: composne storage andf retneval face -moré-of -a: prob-
lem;: how 1s the nmsy retneved trace’cleaned~up~to allow anvunamblguous recall?
items: to: ‘wh« h‘the retneved trace can bescompared Thls solutlon tends to dﬂute
the -compasite chardcter of these -models; The: remalmng ‘connéctionist -and’
neural net models do not offer-clear solutions for cases in “which: the rétrieved.
trace. is noisy encugh. to ‘be: ambiguous. ’Iypxcally a probabilistic recall rule is
adopted, based: on- the ‘matéh-of -the tetrieved trace to- ‘possible résponses. If: the:
model- is-fully compos:te, however, it is. hot- entitely clear-whete the comparison:
stimuli lie,

A second" issue involvés whether the  retrieval: process is assumed to' be
probabilistic or' not. Both ACT* and- SAM' assume a probabilistic' retriéval
procéss. In thesé models, an -item that was not retrieved- on a first retrieval
attempt may still be retrieved if an additional attempt at retrieval is made. (In
SAM it is usually assumed, however, that at least one new cue must be used for
a Subsequent retrieval to have a chance at success). The other models, on ‘the
other hand, are such that a Second attempt will ‘always lead to the same result
(unless the cues-are changed, or have added noisé,-- see McClelland; 19??).

Finally, only a few models (namely' SAM -and the convolution/correlation model
of Metcalfé-and Murdock, 1981)-have béen applied to extended search processes
as in free recall, in which the subject uses a number of différent retrieval cues in
order to maximize recall. It might be -arguéd that the search strategies that aré
probably involved in these paradigins are not part of the "basic" or "elementary"
memory processes. However, such a viewpoint does not do justice to the fact that
many real-life situations do involve this type of unstructured memory retrieval.

2.4.6 Forgetting

Let us define forgetting as a-failure to retrieve information from memor'y at time
B when it was rétrievable at an earlier time A, ‘or as a decrease in the:-probabil-
ity of retrieval, There seem- to be threé basic ways in which forgetting might
occur: (1) ‘a-decrease-in ‘the "stréngth® of the' mémory trace, i.e. decay; (2) an
increase in competition by’ other, interfering, traces (of iters);‘and (3) a change
in the nature of the cue-‘betweén time A and time B, i.e. 4:change in the (furc-
tional) stimulus. There does not seem to be any différence between the models:
with respect to the third aspect, although not all of them have explicitly dealt
with it. Mensink and Raaijmakers (1988) have used this idea in their application
of the SAM model to interference and forgetting. In this model, part of the

forgetting was assumed to be caused by contextual changes, i.e. changes in the
contextual cues between study and test.
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MINERVA. 2: (Hintzna
‘both: assume: that. trace:infaradtion. is- siibjéct to- decayv. ,

;. 1988; p. 532) and. TODAM: s,(Mprdock, 1989, P 77)
TQDAM, his-is “built:
into. the. basic equation. of the sySiem. (see: Murdock, 1982‘.:Eq 1)..It: should: ‘be:
noted however: that this: decay assumption’ diffets. :somewhat fromi: tradmonal
decdy,-conceptions: in that:it.is: related: tothe. storage of new; mformatlon in the
memory-trace; Each.time;a new: ltem 18 added»to the: composxte memory trace, a
fixed:proportion. of-what was there.is; 10st, : producmg -a/Strong ‘recency- effect wrth
a-geometric character, - (It.stiould be: foted ‘that, this. assumed decay is mdepen-
dent of:theintérference-that:is. common: to"all of the composrte storage models,
including TODAM,). : r

All the. memory models consrdered in; this. chapter predict a decrease m perform-
ance -due- to learning. other it¢ms, and-to:learning other- parrs of items (in‘both
AB-AC and AB-CD type tasks), the only general exceptlon occurrmg when: the
other items are rehearsed-or coded jointly with the items in question. In general,
several mechanisms: in. each model help produce interference,. these mechanisms
may -be. different for different tasks (asin:SAM); and the:mechanisms.may. differ
between models. We mention here .a few of the more ‘interesting differences
among the models.

Most composite models ‘incorporate explicit interference .due to the superim-
posed storage assumptions. When vectors -or matrices are added together, or
when a set of weights. are jointly. adjusted for each new input, the result-tends to
be degradation of the representations of each item. There are of course excep-
tions to this rule: If memory is large enough. relative to the size of the inputs,
then storage might. be effectively separate (the amount of superimposition. might
be minimal; see Kanerva, 1988), or if the inputs arc orthogonal enough,. or if the
system: orthogonalizes or separates the inputs (e.g. ‘Grossbergs ART models),
then interference would not be mandated by the factor of composite storage. .

The remaining sources. of forgetting are posited to arise .during the course. of
retrieval (in SAM these are the only sources of forgetting). SAM assumes
summation of activations at retrieval to accomplish recognition; as a conse-
quence, extra items cause forgetting by increasing ’noise’. In MINERVA,
composition during both. recall and. recognition .causes interference due to
increasing noise. Qne chief remaining cause of interference is based on the
relative. strength: of storage of different items. For example, in SAM, sampling in
recall is based on a ratio of activation. strengths. Reduction in. relative strengths
of targets due to extra items. also-plays. an. important role in.many .of the models
under discussion, éspecially the ACT models. This. factor plays a chief role in
accounting for list-length, fan, and cue-overload effects.
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3 APPLICATIONS TO!PARADIGMS

In thls secnon, the vanous models w111 be compared m*the ways that they predlct,

certaifi;basic findmgsﬂmmemory research ~both4quahtat1ve and: quantltatlve

3.1 Cued récall

Cued recall is the basic paradlgm f.)r assoclatlve memory, andthe: present set -of
models have beer: formulated so that cued- recall-predictions: can be made, ACT*

and CHARM: have: beer -applied -more-or -less .exclusively-to-cued. recall data. In.
addition, ACT* and -SAM have been: shown to:‘be:able: to .account. for both

latency: as well as -accuracy data in cued recall’: (Anderson, 1981; Mensink &
Raaijmakers, 1988},

3,11 List-length

All the models are capable of handling the basic list-length effect. However, in
some models (TODAM, CHARM) no distinction is made between the to be
recalled list and extra-list and extra- -experimental information. Whenlist-length
is predicted to have an effect, it does. so- because retrieval is restricted to the
to-be-recalled list (without explanation). This seems unsatisfactory, and: the
natural way to resolve. the difficulty- would be the adoption of some form of
contextual cuing (as is the-case with other models).

However, whether a contextual cue is used may be less important than how it is
used. A typical multiplicative rule for cue combination.tends to focus access
upon regions-of memory in the intersection:of the sets of memory traces evoked
by .each cue separately, whereas a typical additive rule tends. to access traces in
the union of these sets, Humphreys et al. (1991) argue quite convincingly for the
intersection approach, implying that "strengths" or “activations" should be acted
upon in a way functionally equivalent to multiplication (as in the SAM. model,
the Matrix model, etc.) rather than addition (as in ACT*).

Parenthetically it might be noted that thi. type of explanation of list-length
effects sees such effects as an example of a more general effect, i.e. that. the
efficacy of any probe cue is inversely related to the number of memory traces or
items that are associated to that probe.cue.(which might be called the length of
the list of associated-items).

3.1.2 Interference & forgetting

The basic issues here are the effects of different types. of interference (i.c.

AB-AC vs AB-CD), mechanisms for (relative) spontaneous recovery, single-list

forgetting paradigms and whether or not some sort of decay notion is used.
ACT*, SAM, and CHARM have all been explicitly applied to such phenomena.
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Anderson- (1983a) and Mensink and' Raaijmakers (fl988) stiow-that :some Tesults:

in this area:nécessitate-the assumption that-recall is ‘based-on both relative and

absolute-associative: strengthis: ‘Relativé strength jis-a function- of:the number and.

»strength .of-other -associations.while- absolute -strength s indéxed. ‘by. the .amount:
of study time or ‘the: nimbeér. of presentations of an-item. In ACT*, absolute

strength comes. in through the -assumption-that trace formationi i is more likely as
the total study time increases. In' SAM; absolute strengths «deterriine the
probablhty of ‘recovering-enough mformatlon from the trace. to-give- the name of
the item 'as-a'response. - \

Mensink and: Raaumakers (1988) present a theoretlcal analysxs of traditional.
interference phenomiéna. They show. that-modérn mémory models such as. SAM:
are -able to reconcile phenémena: that: have: been - problématic for traditional:
interference theories. Such' analyses bring out a number of tacit assumptions in-
the typical verbal (i.e. non-quantitative) models that are not usually noted.

3.2 Free recall

This paradigm. is more complex than. cued recall. This is due to the fact that it
not only necessitates an exact formulation of the relation between STS/working
memory and long-term memory but also a description of search/retrieval
strategies, Only a few .of the models have explicitly-dealt-with such data, We will
briefly discuss predictions by SAM (Raaijmakers & ‘Shiffrin, 1980) and an early
version of the CHARM niodel (Metcalfe & Murdock, 1981).

SAM assumes that contextual and interitem associations are built up as a result
of rehearsing the items in STS. A buffer -process (Atkinson & Shiffrin, 1968) is

used to model the rehearsal -process. Retrieval starts by: outputting-any items still

in STS. Thereafter the retrieval process. is. modelled as a series of retrieval
attempts either with the context cue alone or using both context-and:a previously

retrieved item as. probe cues. This process continues untll the number of failed

searches reaches a specific criterion.

One of the strong points of the SAM model is that it handles with a single set of
parameter values data from lists with large variations in presentation rate and
list length. The latter result is predicted because the search termination criterion
is exceeded sooneér for the longer lists, relative to list length: relatively fewer
samples are made from a longer list than from a shorter list. This prediction is
characteristic of sampling-with replacement search models with a fixed stup
criterion, It also subsumes the cue-overload principle proposed by Watkins
(1975; see also Mueller & Watkins, 1977; Watkins & Watkins, 1976). This
principle states that the. p.obability of recalling any particular item decreases
with the number of instances associated to the retrieval cue.
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Although the*Metcalfe and. Murdock: (1981) freé.récalls modelfrs «déscribed:in the:
termmology -of .the. convolutton-correlatton model, the; actua.l simulation. model
does:not:in: fact -use:the:mathématical’ operatlonseof «convolutlon -and: rcorrelatmn.
Instead, all Or.-none-associations. are: stored: between hst items;, and betweens hst
items and ¢ontext. (treatéd:as-a hst},ltem). When anitem-is-used: as a: Cu¢; a
raridom choice is retrieved perfectly from the:stored: assoc1ates, if any..

The rehearsal process 15 conceptuahzed as. a contmuous cumg of the memory
vector with :the currently ‘available item. Thus, ‘when: an--item.is.presented; it is
associated-to the.item that .is.curréntly-available. (context at: the start-of ‘the: hst)
Then the just-presented item-is used-as a:cue.to- generate an:item:to whlch it has.
been associated, and then ‘this. item:is used .as a new cué;. etc. This: continues.
until the next item is presentéd which. is .then: associated to the. item that is
currently: available.

At the time -of recall, the last rehearsed item is recalled and used as a cue to
generate another item; then this item is itself used as a cue, and this' continues
until a certain criterion amount of time has passed without any new items being

recalled. At that point, context is reinstated as a cue. and the process begins:

anew and continues until the criterion amount of time passes for the second time
without any new recalls.

Each of these models predicts: serial position effects. Since the SAM model is
based on the two-store framework, it should not come as a surprise that it makes
many of the same predictions as the classic two-store model (see Atkinson &
Shiffrin, 1971; Raaijmakers & Shiffrin, 1980), and for the same. reasons; primacy
is. predicted because of the cumulative rehearsal assumption, while the output
from STS leads to a recency effect, Although. the two-store model is often
described in textbooks as havmg problems handling data on levels-of-processing
and recency effects, this is in fact.not correct (see Raaijmakers, 1991).

The Metcalfe-Murdock .model. has a quite different flavour. In. this model, the
shape of the serial-position curve.is critically determined by the cues that are
available. at recall. Recency is predicted because the last presented .item is
recalled first and then used as a. cue, This item is assumed to be. the optimum
entry point into the end of the list. The disappearance of the recency effect by
the introduction -of a delay between presentation and test .is explained by the
assumption that rehearsal continues during the delay. Hence, at the end of the
delay the currently available item will most likely be some other item than the
last item on the list. The optimum entry point. for recall of the last few items is
therefore lost. This explanation. seems .unlikely since providing the subject with
the terminal item -after the delay interval should reinstate the recency effect.
(Another problematic aspect is the assumption that rehearsal continues .during
the delay filled with.arithmetic.)
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Primagyis predlctedkby ‘this-model- becanse-context:i§ tised: as-a-rétrievalscué:(in
thé:second’ phase of thie-récall: process); :and- conteéxt-is nearly always relatlvely

strongly assoclated with:the: fifst-item: Thus;: thls«explanatlon is-quite: sirfiilar-to-
the typm.l two-store: explanatlon of :primacy ‘a§ beéing-due :to:stronger- traces for-
the initial items: (m thls casefbemg more strongly assoclated to context)

One of the more important’ advantages of the recent work on models of meéniory
is that it has led to model:based-simulation; ‘prograins for-$peécific experimental
tasks. These prograiiis- can’ then: be. iised:to- sée- tiow-the: inodel behaves. under
specifié ‘éxperimental- conditions. This s especlally inmiportant.in free recall 'since
this‘paradigm- doés-not‘lend: 1tself easlly 10-analytic approaches:.

One-aspect ‘of the ‘data-where this has-beén provén to-be very-helpful i§ in -the
analysis of the effects of various types of cuing manipulations. of-thelikélihood of
recall. We will mention two: the (positive) effects of category cues and the
(negative) effécts of cuing with randomly ‘selected list items (the so-called
part-list cuing effect).

Razijmakers and Shiffrin (1980) showed that typical effects of cuing with
category names- could be -easily. predicted by the: SAM simulaticsi model. These
predictions do not greatly depend on the specific assumptions of SAM (vis-a- vis
alternative models). Such analyses are however important to show that observed
effects are indeed consistent with particular theoretical frameworks.

This is even more the case in: the part-list cuing paradigm. In this paradigm
subjects are given some randomly selected items from the list as cues for the
remaining list items. The fypical finding is that such cuing leads to a slight but
unexpected: decreasé in the probability of recall for the remaining items.
Raaijmakers and Shiffrin (1981) spent a -good deal of effort analyzing this
peculiar effect within theéir SAM simulation of ‘free récall. They showed that this
counterintuitive effect was in fact predicted by the model. In addition to the
basic result, a number of related findings were predicted. These incluw ‘d the
number of cues, the time at which the cues were given, and the effect of
interpolated learning (between presentation and test). Raaijmakers (1991) shows
that the model predicts a reversal of the cuing-effect if a deldyed testing pro-
cedure is used. This:prediction is-indeed borne out. This research has also shown
that it is by no means éasy to intuit the predictions of a relatively simple model
such as SAM in a-complicated experimental situation.

This part-list cuing effect has also-beén dealt with by Metcalfe and Murdock
(1981). However, in their simulation-it was assumed that the list cues were not
actually used by thé subject. This-assumption makes it relatively easy to predict a
negative effect-of cuing but does not make much sense :given the fact that most

subjects will expect the cues to be helpful (as did- most memory specialists). In

addition, such an approach makes it impossible to predict a reversal of the cuing
effect in delayed cuing.
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Note. ‘however: ‘that :these-problems -are- not: due to -the- basic. structure..of. the
convolutlon/correlatxon model: (whlch ‘was..in.fact put: a51de) but. t0- the . assump-
tions that are made concerning ‘the: subjects strategy.- This- ﬂlustrates that
predictions for free recall:tasks. critically- depend on: the strategy that-is-uséd, i.e.
on:the; assumptionssthat are. made: concerning: the;Sequence ofi cués-to-be used in
retrievak; -Gronlind: and. Shiffrin. (1986), examined:the- effects.of various: retrieval
strategies on: recall from: natural- categories::and-catégorized lists, They showed
that: different:: strategles indeed have-an:éffect on recallperformance.. This: result
poses two: problems for. any: model- for- free: recall First, it makes:it problemanc
to: apply: -a-specific (arbitrary). version-of . the.model-to. the data of.a group of
subjects,. unless. it -can be shown:that the- result of interest: is msensmve to- the
choice of strategy or:that-the subjects' all use -a similar strategy. Second,. given a
specification of retrieval strategies (i.e. in terms of the sequence .of cues that are
used), the model should be able to give a quantitative account of the resulting
performance differences. Gronlund and Shiffrin (1986) show. that a simple
extension of SAM could-account for the observed differences.

33 Recognition

Most current models of memory assume that simple recognition decisions are
based on some sort of global familiarity value.. By this we. mean that. the familiar-
ity value.is a kind. of weighted, additive-combination of the activation of all items
in memory. This giobal familiarity value is determined by the match between the
probe cues and the memory- trace(s). This general type of model has been
termed the General Global Matching Model (GGMM, Humphreys et al,, 1989)
or. the Interactive Cue Global Matching (ICGM) model (Clark & Shiffrin, in
press). As these labels imply, such models differ from previous :local matching
models in that all items in memory are involved in the match, not just the
representation of the tested item. In this section we will consider some of the
data that have been used to test these models.

3.3.1 Pair recognition

Pair recognition has been used as an experimental paradigm to test aspects of
recognition models. Basically, the issue here is the way in which associative
information is assumed to contribute to recognition decisions. In these experi-
ments the subject first studies. a list of word pairs (4,B,, AzBL .)."At test, intact
pairs (4;B,) have to be. discriminated from rearranged pairs (4;B;); mixed (4,X)
and/or from new word pairs (XY). These results may be compared to those
obtained in single item recognition (4; vs. X). and/or cued recognition (4,B; vs.
AX where only the:second item has to be judged; see Clark & Shiffrin, in press).
Humphreys. et al. (1989) show that all. extant versions of -the global matching
model (SAM MINERVA 2, Matrix, and TODAM) lead to similar. equations for
the mean matching strengths. This would seem to imply that it will be difficult to
differentiate between these models. However, predictions for d’ depend not only
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the méan strengths- bt -also: on-the- vatiances. Fur'tlie'rmor"e, it may be:possible to
distinguish-between: the. models if -ofie .also- takés the- predlctlons for sinigle-item
recognition-and cued recogmtlon -into: account

Clark and’Slnffnn (in press) éxamined-the-predictions:for-all: types of recogmtlon
tests. ‘They show that the modéls. differ: with- respect t0 whether -they predict an
advantage for cied. recogition: compared:to. smgle item recognition: The-results
of their experiments were:reasonably well-predicted: by TODAM :arid SAM: with
TODAM producing the best fit: MINERVA 2 and. the. Matrix-model did not.fit
the-data. well. Oneé-problém with. such: daia ‘however is :that it might very well be
the case that subjécts make use of ‘récall-processes ifr addition-to" global matchs
ing. That is, the Jlogic of the modéls allows ‘subjects ‘to- supplement ‘global
matching with ‘recall.

Gronlund and Ratcliff (1989) pointed to another: problem for global matching
models. They examined the time-course' of the availability of item and
associative information using a response signal procedure (Reed, 1973, 1976;
Dosher, 1976). In this procedure, a recognition decision must be made at one ¢
several pre-defined times after the onset of the test stimulus. With this pro-
cedure it is possible to determine the growth of accuracy as a function of
processing time. Gronlund and Ratcliff showed that item information becomes
available sooner than associative information. This poses a problem for global
matching models since these treat these two types of information as inseparable.
To accommodate the results, separate contributions of item and associative
information are required, possibly by distinguishing between concurrent and
compound usage of cues (see Gronlund & Ratcliff, 1989). That is, it might be
assumed that memory is probed in parallel with an interactive, compound cue
and with the item cues separately. As an alternative, it might be the case that
pair images are sometimes stored, and that the time course of pair-image activa-
tion differs from that of single-item image ‘activation.

3.3.2 List-length vs list-strength

Recent research by Ratcliff, Clark and Shiffrin (1990) has focussed on the effects
of the strength of other list items on the recall and recognition of target items.
This so-called "list-strength effect' concerns the effects of strengthening (or
weakening) some list items upon memory for other list items. Ratcliff et al.
(1990) showed that strengthening some items in ‘the list decreases recall of the
remaining list items but has no or even a positive effect on recognition per-
formance. This contrasts with the list-length effect: adding items to a list
decreases both recall and recognition performance. Thus, the number of irrel-
evant items, but not their strength, affects recognition. This is true not only for
strength: variations due to amount of study time but also for variations due to
spaced repetitions.
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This- pecuhar result: should: ‘have a. number of consequences. for miodels. for
récognition;. I partxcular, itvwill ‘be nécessary:. to--assume-a-stiuctural difference:
between presentation.-of: two . differént: iteins versiis - two' preséntations’ of a: smgle»
itém. ‘Shiffrin-.et ‘al. {(1990)-showed:that ‘currefit: memory. todels indeed caninot,
predlct boththe : ipresence of a. hst—length effect and the abserice - (or reversal) of
a list-strength effect. B ; ‘ .

Shiffrin' et -al../(1990)..also- mvestlgated ‘whether-the various models -would: allow
modification so-as-to bé able-to:predict:these. results. “Thisdoes:not seem.to-be.
poss1ble for those models that: assume: that .items are : stored:in_ one composite
memory. trace. Evén' considering. ‘recoghition- only, ‘thése :models. cannoti predict
both.a: positive list-lerigth: effect -and-an' absent .or negative list-stréngth. effect
when strength variations-are- due to spaced: repetmons. ‘Models;such as°SAM :and
MINERVA 2 that assumé separaté Storage are in:principle bettér équipped to
handle these results although they too will have to. be modified to-be .able to
predict negative list-strength effects.

Shiffrin et al. (1990) show that.a miodification.of SAM: can handle these.resuits.
In this modified SAM model it .is--assumed that different items are stored in
separate tracés but repetitions: of -an ‘item -within- a. list are stored in..a single
memory trace.. Second, the variance of ‘activation of -each separate trace, when
the cue item is unrelated: to the item(s) -encoded in the trace, is. constant
regardless of the strength of the trace. This latter assumption is inconsistent with
previous formulations -of SAM but. is defended using a differentiation argument:
the better the image is encoded, the clearer are. the differences between it and
the test item, and hence the lower the activation. In-this way, a constant or even
decreasing variance may be. predicted, depending on the weighting of -context
and item cues.

A crucial aspect of this explanation is that repetitions of an item are assumed to
be. stored in a single memory image. To evaluate it. further, Murnane and
Shiffrin (1991) tested whether a.reversal of the list-strength effert. in recognition
occurs if repetitions are presented in such a way that they a.c likely to be
encoded in se¢parate images. They found that repetitions of words in different
sentences produced a list-strength effect whereas repetitions of entire sentences
did not. This demonstrates that the -nature of the encoding of a repeated item is
a crucial factor.

34 Evaluating the models

In this chapter we have shown that current mathematical models of memory are
capable of handling many classical and new findings in recall and recognition.
We suggest that model. of this type are superior to verbally stated theories of
memory. Arguments in favour of the modelling approach include: (1) the-ability
to predict the size (and not just the direction) of the effect of experimental
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factors, (2) the. ablhty 10- predlct the -efféct -of ;combinations: of - expenmental

factors;. (3 ) the: ability:to;éxamine the: combmed fesult:of: theoretlcalaassumptlons,t
'(4) the fact that ax modelf(espec'allysmsthe form of aasmulatlon program) can be

crucxal‘ vanables that underhe a gwen predlctlon, and (5) the fact that models
ofteri-demonstrate thé:limitations: of more intuitive teasoning,

Such:a- conclusion: is however: often cntlcxzed ot the: -ground: that. general :models
of mémory of ‘the type discussed. in: this. chapter ate. too-versatile; That is,the
models - usually. incorporate :a relanvely large: number ‘of processes: and' parame-
ters ‘that seem: to énable: them: fo ‘predict. almost any.type..of empirical result. In
addition, it is-often. difficult to:intuit-what:a speclﬁc ;model:will predict-in a. given
situation.. This' contrasts ‘with the simplicity of ‘typical verbal, ‘non-quantitative
explanations of memory phenomena.. It will be-argued in- this:section. that sthis
difficulty-is often more apparent:than:real,

First, quantitative models also make qualitative predlctlons that do not depend
on -parameter ‘values, That is, in- order to--evaluate :a model’s. ability to predict
data, one should not only examine ‘the phenoména: that it ¢aripredict but-also
take into--account whethér it makes strong, parameter-free. predictions about
results that should not occur (no matter ‘what parameter values are -used):
Second, if a particular prediction depends.on the specific parameter values that
are used, it should be -possible to arrange the experimental situation in such a
way that that particular result is reversed. Third, the -argument may also be
turned around: if the ability of a model to predict aparticular phenomenon turns
out to depend on parameter-value. one may well ask whether a corresponding
qualitative explanation is in fact logically sufficient. Finally, some results are
indeed complex (i.e. dependent on a number of .interacting processes) whether
we like it or not, In fact, one advantage of quantitative models of the type dis-
cussed in this chapter is that they may be used to see-whether particular "verbal"
explanations -indeed- hold true when tested in the context of a comprehensive
model of human memory. The next sections will focus on specific aspects that
are involved-in this discussion.

3.4.1 Number of parameters

Currenit quantitative models of memory frequently incorporate a dozen or so
parameters. These parameéters reflect both structural aspects of the memory
system (decay rates, processing times) as well as task-related aspects (weighting
of cues, stopping criteria, decision criter:a). When'a.model is fitted to .a set of
data, these parameters usually have to be estimated from those data, that is, they
are given values so as to optimize the fit to the data. Although this procedure
can be rigourously defended on statistical grounds, it does seem to many to
involve a bit of cheating. It is .probably: for ‘this reason that the relatively large
number of parameters in current models-is frowned upon.

S e e ey ot i oo i st e s

[P
¥

N e e —n R

OR3P s

o g,

o bt




REUINEN

e G SR o

U

e i v Sl

A A i o o et e - —— - - e . AT it e

o s i s b ae o~ . - . - . J R P o

3t

In:mény-cases- however, ;the mimber:of’ parameters s notsréally: ansissue.: :That.i;.
thie: quahtatrve natiire-of:the predrctlons -does:1iot: depend on-the-exact: parameter
valies: Thus; ‘mafy-: ‘oféthe ssirulations:are performed using: a 'sing'é; Set: of;
paraiéter values: (seee.g. Metcalfe & Murdock, 19815 Mensiik :&: Raarjmakers,;
1988 Hmtzman, 1988) :Ime those cases: where parameter wvalues: do--reverse: a:
partlcular predrctron, empmcal evidence: should.be v\obtamabler concemrng ‘this
predrctron (see ‘eig: the predietion: of ay reversalt. f thepartlist:cuing éffect:ds.a
functron of ‘the- contextual strength parameter in-the: SAM model, Raarjmakers,
1991) Another point is. that non—qnantrtatrve amodelsz also include: parameters,
that is, degrees .of freédom, although this. is- farely realized. To put this in
atiother way; ‘most- explanatrons for- memory. phenomena ‘by:models:of memory
might ‘be formulated: in:a: quahtauve way. In- this way, there would: ot ‘be-any.
basic -differerice: between quantntatrve .and qnahtatrve ‘models. Howeve, . the
resulting theories: would have lost. most of: therraexplanatory power;’ ,

3.4.2 Number.oﬁpmcesseS'

Most of the: difficulties with-well-specified quantitative modéls *have to-do with
the. -relatively large number of :processes :thzi .are--usually :proposed. This i§
especially the case -when models attempt to be applicable to a large number of
different experimerital paradigms. As emphasized by Smith (1978), there is a
tradeoff between. generality and" srmphcrty .of ‘theoretical. models.. The. problem
here is that ‘due to the. number:of processes and the-number of parameters .(or
quantitative relations) involved ‘in' complex memory ‘models, it is often. not
possible to make .predictions. about the. behaviour of the model except through
quantitative.simulations.

We give an example (drawn from own experience) to illustrate :this point. When
the SAM model was first applied to the part-list cuing paradigm (see
Raaijmakers-& Shiffrin, 1981); it'was not:at all clear whether it would-or would
not predict: this: effect. ‘Furthermore, :evén after the prediction turned: out to be
successful, it was not immediately clear (to say the least). what factors. in'-the
model-were causing it:

What this:shows is.that: it is not- possible to.make.intuitive predictions:concerning
the behaviour that a model will show under specific task conditions. However, it
should ‘be evident that a similar problem holds for "verbal" theories of memory.
In such qualitative:accountsit. is:not clear what .the boundary.conditions .are-that
apply-to:a particular .prediction. The lesson.that can be drawn here is:that;much
more: effort should be invested in: theoretical’ analyses-of the. factors involved in
predicting" empirical phenomena. Such analyses should: focus on' the: role .of .each
of the propose- processes-in the explanation.of a particular phenomenon.
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Although all the models that "Wes have cons1dered are formulated m, aaquantltat-

‘‘‘‘‘‘

- ive; mannet; - there, isi-a; tendency m «Cutrént: work, to: restnct ‘the: ‘analysis 0.

qualitative ; predlctlons, ithat.dis;.one: analyzes only 'whether a model ,predrcts the

‘ generalxdlrectmn offan:effect, rather: thantthesexact; magmtude Jn.¢ontrist.to:the:

tradition-of the 1960’s and; 1970%;. typlcal goodness-of-ﬁt /measures:-such: as: thé
chr-square ‘statistic: donot. figure: prommently inithe: typtcal artlclea thattnowadays
presents a;formal: model :0f: memory C o ,

Thrs poses. a: problem. Onrthe one hand, 1t can be defended ‘that.one: does not
want:to focus: 100 specifically :on- the: éxact, numeérical: details-of one: particular

-experiment, -on thie: othet: thand. it would be: desnrable -t0 at least look. .at:‘the

relative magnitude of ‘a .particular: efféct (relative: to \othier predxcted -effects).
That is, suppose that there are twophefiomena of interest: ‘Effect A and Effect
B, where A is a large effect and:B.a smiall. (but. cons1$tent)sone. It.is:conceivable
that a model would be able-to predict both A and B in a qualitative manner but
that it would- always; predict-either- A and :B:both:small or.A and-B-both large.
Such:a: "misfit"would:hot:be-detected-if :the: analysrs focuses -only:on-the- quahtat-
ive aspects. \ \

Fortunately, most presentations of formal .models for memory employ a strategy
that.is-in:between these.two extremes. The typical approach:is:to-use a single set
of parameters to examine ‘a-set-of data (or data. patterns) that.is représentative
of empirical findings.. Although. none .of the actual: data is really fitted in ‘the
traditional sense, the use of a single set of parameters makes: it: possible to-verify
that the model makes predictions that are in the right ballpark in terms of
relative effect sizes.

Hence, we may distinguish ‘between three degrees of comparing the model: to
actual data: -qualitative, quantitative, and what might :be .called semi-quantitative
analysis, The first involves only the ditection of a difference -between: conditions;
the second involves a direct comparison between the predicted -and. observed
data using a goodness-of-fit measure; finally, the third does not involve a
goodness-of-fit:méasure .but.does look .at the sizes-of the: predicted and.observed
effects.

Although real quantitative fiis: remain .a: desirable feature, it miglit be :argued
that the proper -approach is- to-first aim for a-sémi-quantitative.prediction. of the
data. In this phase, the emphasis .is -on showing that a model can: deal with a
variety -of findings from' different task: paradigms.. At some point,a number:of
promising-models will have been- developed. At that stage, the time:seemis to: be
ripe for quantitative tests in which several models may be compared in terms of
goodness-of-fit, We believe that the demonstrated potential of current models of
memory justifies the expectation that future work in this area will involve more
comparative, quantitative testing.

ok VA

o e h R eG———— —- < 5t b % oo e w2 St <

R 3 4R

o e vy i

St e 1 = A Ot e

e P :
- !
. & B

A S W gt P




e RS A IS

T e

e N

B . - - v v omo s v
[RTUTPNPIT SN -

3y
“y

;334

Quite ‘Teceitly; John: Anderson; (1990 §ee. also: Anderson & Milson,. 1989) ‘has

proposed-a: model:that: attempts, in-a: Sefise; 40 -meld: somefof thé:best-features of
“the.two: ‘approaches- we: ‘have: ‘béeri: contrastmg (detarled formal, iquantitative,
process. models vs. general, ‘verbal,, descnptlve models) His:*Rational” model
“bypasses detaxls of ‘Tepresentation: and process t0; the:. greatest possrble “degree,
. and-instead:is.aimed: at-the: general proposmon that ‘memory is: orgamzed $0.as’
“to-$0lve the: ‘memorizer’s problémis:in: amoptrmum *fashron. In: -aty given: retneval:

situation, it is -assumed: that the: events stored: in- ‘memory each ‘havéa fiumber
assignéd:to: them: representmg therrrprobabrhty of. bemg relevant (contammg ‘the
desired information), It is assumed- that these: events::afe: searched iil,-otder-of
their-relevance, -either until a.fetrieval occurs:or a- stopping: ¢riterion is-reached.
The probabilities. are ‘based.on- two. multxphmnve factors:. the jpast: history -of an
event’s usefulness: (independent: of “the: cues uséd: to. probe memory), and’ the
likelihoods of relevance: associated: with: thé cues. :So.far- only ‘the: barest.hints of
applications to mémory paradigms -are avaxlable It is-interésting that the model

‘operates .at' a- very abstract level, :and. yet offers quantltauve predrctlons for

certain phenomena. Although initial .tésults are. intriguing; it is: far too -early to
assess. the long. run usefulness of ‘the approach.
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